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Automatic analysis of child speech

Abstract

Purpose: Heterogeneous child speech was force-aligned to investigate whether 1)
manipulating specific parameters could improve alignment accuracy and 2) forced
alignment could be used to replicate published results on acoustic characteristics of /s/

production by children.

Method: In Part 1, child speech from two corpora was force-aligned with a trainable aligner
(Prosodylab-Aligner) under different conditions that systematically manipulated input
training data and the type of transcription used. Alignment accuracy was determined by
comparing hand and automatic alignments as to how often they overlapped (%-Match) and
absolute differences in duration and boundary placements. Using mixed-effects regression,
accuracy was modeled as a function of alignment conditions, as well as segment and child
age. In Part 2 forced-alignments derived from a subset of the alignment conditions in Part 1
were used to extract spectral centre of gravity of /s/ productions from young children.
These findings were compared to published results that used hand alignments of the same

data.

Results: Overall, the results of Part 1 demonstrated that using training data more similar to
the data to be aligned as well as phonetic transcription led to improvements in alignment
accuracy. Speech from older children was aligned more accurately than younger children. In
Part 2, /s/ center of gravity extracted from force-aligned segments was found to diverge in
the speech of male and female children, replicating the pattern found in previous work
using manually-aligned segments. This was true even for the least accurate force-alignment

method.

Conclusions: Alignment accuracy of child speech can be improved by using more specific
training and transcription. However, poor alignment accuracy was not found to impede
acoustic analysis of /s/ produced by even very young children. Thus forced-alignment

presents a useful tool for the analysis of child speech.
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Introduction

Automatic forced alignment for phonetic research

Acoustic analysis of speech has traditionally required labor-intensive hand
annotation of segment boundaries or acoustic events. The time-consuming nature of
the process has limited the scale of these studies. There has been a growing interest
in very large spoken language corpora in order to facilitate more large-scale
research on systematic variation in speech (Coleman et al. 2011; Beckman et al.
2017). Such research depends on the ongoing development of tools for increased

automation of the process.

One such tool is forced alignment, or the automatic time-alignment of a phonetic
transcription to an acoustic speech signal using automatic speech recognition (ASR)
tools. Forced alignment takes as input an orthographic transcription of the speech
signal, the speech signal itself, a pronunciation dictionary, and acoustic models
trained to recognize the phones of the pronunciation dictionary. As output, it aligns
phone and word-level transcripts to the acoustic signal, producing an automatic
phonetic segmentation. In cases where more than one possible pronunciation is
listed in the pronunciation dictionary (e.g. “talking” versus “talkin’ as in Yuan &
Liberman 2011b), the aligner is forced to choose one. These pronunciation choices
as well as the segmentation of the aligner can then be used for subsequent analyses
(Gorman, Howell, and Wagner 2011; Milne 2014; Renwick et al. 2013; Schiel 2004;
Yuan and Liberman 2008; Yuan and Liberman 2011a). Several degrees of freedom
can affect alignment accuracy, including the speech data on which it was trained and

on which it will be used, as well as the variants in the pronunciation dictionary.

While many aligners come with pre-trained, default, acoustic models for users
(Gorman, Howell, & Wagner 2011; Bigi 2012; McAuliffe et al., 2017), some forced
aligners are also trainable, which means that the user may retrain acoustic models
using other audio data. Typically, training a forced aligner is much like using one,

except that the aligner must learn the best acoustic models instead of having them
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provided. Importantly, it is not given the alignments themselves to learn from, only
the orthographic transcription, dictionary and sound files. Thus with a trainable
aligner, a researcher always has the option of training on their own, unaligned data,
and then subsequently aligning it. In fact, this is sometimes encouraged as a means
of improving alignment accuracy (McAuliffe et al. 2017). However, this may or may
not be the best choice for a given data set and here we explore some of the factors

that might help determine that.

Forced alignment has been successful for automating acoustic analysis of adult
productions, for example, related to sibilant spectral center of gravity (Clayards and
Doty 2011), acoustic reduction (Schuppler et al. 2011), word- and syllable-final
consonant realization, (Yuan and Liberman 2011a, b; Schuppler et al. 2012; Milne
2014; Adda-Decker and Snoeren 2011), nasal place assimilation (Renwick et al.
2013), and vowel change (Labov, Rosenfelder, and Fruehwald 2013). The success of
these attempts suggests that this is a viable new tool in the speech researcher’s

toolkit that could find many applications.
Automatic recognition of child speech

One such application would be extending these techniques to other populations
such as children. However, ASR technology is known to perform more poorly with
highly variable speech, such as with child utterances (see Benzeghiba et al. 2007;
Beckman et al. 2017 for reviews), with error rates generally inversely correlated
with age. Child speech differs from adult speech in that it is more variable, slower,
and systematically different in spectral dimensions (Lee, Potamianos, and
Narayanan 1999). In fact, human listeners often also have more difficulty in
understanding very young children’s speech (D’Arcy and Russell 2005). While most
ASR systems are trained only on adult data, the differences between adult and child
speech makes recognition of children’s speech using acoustic models trained on
adult speech problematic (Wilpon and Jacobsen 1996). Warping children’s speech
using vocal tract normalization so that it more closely matches adult acoustics

improves performance (Gerosa, Giuliani, and Brugnara 2007; Potamianos,



Automatic analysis of child speech

Narayanan, and Lee 1997), as does training acoustic models with child speech
(Wilpon and Jacobsen 1996, though see Gerosa, Giuliani, and Brugnara 2009), the
latter of which may be more successful (Elenius and Blomberg 2005). Another
source of difficulty for automatic systems is that children do not always pronounce
words with the same phones as would be found in an adult pronunciation dictionary

(Benzeghiba et al. 2007).

In ASR, the system must determine what the words were as well as where the
segments are. In forced alignment, however, the transcription is provided, making
the task more constrained. As such, forced alignment is a potentially viable tool for
analyzing children’s speech. For example, Lee, Potamianos, and Narayanan (1999)
used it to facilitate analysis of acoustic properties of speech of 5- to 11-year-olds.
Given that forced alignment is an ASR-based system, however, it is likely that its
accuracy is subject to similar pitfalls. Relatively little work has examined factors
affecting the accuracy of forced alignment for children’s speech. This paper does so
by exploring how accuracy is affected by parameters that researchers may be able to

manipulate.

The first half of this paper explores the effects of three alignment parameters on the
accuracy of forced alignment in child speech: the type of data used to train acoustic
models (whether it includes adult or child speech, including the exact speech to-be-
aligned), the type of transcription used (orthographic or phonetic), and the speech
segment to-be-aligned (vowels, stops, sibilants). We also explore the effects of
speaker age and, more qualitatively, speaking conditions (spontaneous versus
elicited). The first half aims to explore the options that would typically be available
to speech researchers looking to force-align their data in order to better understand
how these options affect alignment performance. The second half asks an important
follow up question: however accurate the alignments are, can they successfully
replace hand segmentations for acoustic-phonetic analysis? We explore this
question by attempting to replicate the findings of Bang, Clayards, and Goad (2017)
on /s/ productions in children using automatic alignment of the same data. If

acoustic analysis conducted on force-aligned /s/ data leads to the same conclusions
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drawn in Bang et al. (2017) where the speech was manually aligned, this would
indicate that some analyses of child speech may benefit from this automation
technique as has been demonstrated for adult speech. /s/ productions may be a
good candidate for forced alignment, given that the spectral properties of frication
are relatively stable throughout any particular production (see, however, Iskarous,
Shadle, and Proctor 2008 for evidence of important dynamic patterns). This may
mean that acoustic analysis of /s/ is less reliant on highly accurate temporal
alignment. If, however, the variability inherent in child /s/ production poses too
great a challenge for accurate alignment to reliably capture the relevant acoustic

signal, the utility of forced alignment for analyzing child speech is still limited.

Child /s/ production

In children, /s/ production is highly variable over the course of development (e.g.,
Smit et al. 1990; Nittrouer 1995). Target-like word-initial /s/ production is not
typically achieved by most (90%) English speaking children until after age seven
(Smit et al. 1990; Li, Edwards, and Beckman 2009); young children instead may
produce distortions, phonetic substitutions, or omissions. Such variable
developmental acquisition may depend on structural or motoric constraints of
sibilant production (Green, Moore, and Reilly 2002; Vorperian et al. 2009; Vorperian
et al. 2011; Mugitani and Hiroya 2012; McAllister Byun 2011; McAllister Byun
2012). Children’s productions of /s/ tend to have a lower center of gravity, smaller
spectral slope, and are more coarticulated with following vowels compared to adult
/s/ (Nittrouer, Studdert-Kennedy, and McGowan 1989; Nittrouer 1995; Nissen and
Fox 2005). Sex/gender differences in /s/ production that cannot be explained by
anatomical differences alone have been found to occur in the speech of very young
children (Bang, Clayards, and Goad 2017; Li et al. 2016). For example, Bang,
Clayards, and Goad (2017) found that all children between the ages of two to five
years old produced /s/ differently from adults, but also found that male children
produced more adult male-/s/-like productions, and female children produced

more adult female-/s/-like productions. This difference, measured by differences in
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spectra analysis of /s/, was apparent even as early as three years of age and
increased as children got older. In our analysis we will attempt to replicate this

gender difference and its interaction with age.
Purpose

This paper explores the use of automatic forced alignment on the heterogeneous
speech of young children in order to determine variables that lead to improvements
in automatic analysis of highly variable speech. Specifically, we predict that: 1)
automatic forced alignment, compared to manual alignment, will yield similar but
much less accurate boundary predictions of child speech segments, 2) a subset of
modifiable parameters for forced alignment will lead to greater alignment accuracy
when used with child speech, and 3) that the application of these parameters will
lead to more accurate acoustic analysis, comparable to analysis performed using
hand-segmented data. In order to test these predictions, this paper is divided into
two parts. In Part 1, using a trainable forced aligner, we systematically explore the
effects of four modifiable variables on the accuracy of force-aligned child speech—
pronunciation dictionary, training data, phonetic class to be aligned, and child age—
for two different speech corpora. In Part 2, we use a subset of these parameters to
automatically align and analyze child /s/ productions, using the same dataset and
methodology used in Bang et al. (2017), to determine whether forced alignment is a

viable tool for automatic acoustic analysis of child speech.

Part 1: Examining the viability of forced alignment on child

speech

Methods

We compared manually- and force-aligned child speech data in order to identify
mutable alignment parameters that optimized the force-aligned output. Using a

trainable forced aligner on two distinct speech corpora, we explored three
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alignment parameters that represent methodological choices in a standard research
setting: pronunciation dictionary, training of acoustic models, and phonetic segment
of interest. These parameters are described below, and, when referred to as
predictors, identified in SMALL cAPS throughout the text. Distinct levels of parameters

are identified in italics.
Speech corpora

We analyzed data from two speech corpora available from the Child Language Data
Exchange System (CHILDES; MacWhinney 2000). These corpora were chosen in part
to represent different testing environments and paradigms used to elicit child
speech. The Julia corpus included approximately two hours of speech from one
female Canadian-English speaking child. Spontaneous speech data were collected
longitudinally from ages 1;5 to 3;6 in a naturalistic play setting (Goad 2010). The
English version of the Paidologos corpus included approximately five hours of
speech from 81 children (40 females) from Columbus, OH, ages 2;0 - 5;11 (Edwards
and Beckman 2008). Speech consisted of single word productions elicited during a
picture-prompted word repetition task. Both corpora included orthographic and full
or partial phonetic transcriptions. The speech audio files were segmented at the

utterance level to prepare for alignment.
Forced alignment

Automatic segmentation was performed for all data using the ProsodyLab-Aligner
(Gorman, Howell, and Wagner 2011), which uses the Hidden Markov Model Toolkit
(HTK; Young 1994). A full description of how forced alignment was applied to these
data can be found in Knowles, Clayards, Sonderegger, Wagner, Nadig, & Onishi
(2015).
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Predictors: Alignment parameters

Table 1 describes the speech corpora and the alignment predictors included in Part
1: pronunciation dictionary, training data for acoustic models, and phonetic segment

of interest.

Table 1: Alignment parameters used in Part 1. CMU = Carnegie Melon University

Parameter Levels Description
CORPUS Julia One child in a naturalistic setting

Paidologos Multiple children in a word repetition task
PRONUNCIATION Standard CMU Standard dictionary
DICTIONARY Customized Comprised of actual phonetic realizations
TRAINING OF ACOUSTIC Adult-only Default acoustic models trained on adult
MODELS laboratory speech

Adult-child Mix of adult and child speech

Child-general Mix of child speech (nonspecific)

Child-specific Speech of specific child or children to be

aligned

PHONETIC SEGMENT Voiceless stops  p,t k

Voiceless s, [

sibilants

Vowels various

Pronunciation dictionaries

Forced alignment requires a phonetic transcription of the audio speech data to-be-
aligned, often provided in the form of a pronunciation dictionary in which
orthographic forms are mapped to phonetic transcriptions. We included two
PRONUNCIATION  DICTIONARIES:  Standard, comprised of target-like English
pronunciations, and Customized, developed from the phonetic transcriptions of child
utterances. The Standard dictionary was used for alignment of both corpora and
consisted of a standard North American English transcription, the CMU
Pronunciation Dictionary. The CMU Pronunciation Dictionary is a machine-readable

pronunciation dictionary for North American English that provides over 134,000
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words and their phonetic transcription in ARPAbet.! Julia was also aligned using a
customized speaker-specific pronunciation dictionary consisting of the phonetic
transcription of her utterances (a full phonetic transcription was not available for
Paidologos). Each utterance was given a unique entry in the pronunciation
dictionary. The supplied narrow phonetic transcription was collapsed into a
broader set of ARPAbet characters to provide more exemplars for each ARPAbet
category. See Table 2 for an example of ARPAbet entries for the two pronunciation

dictionaries.

Table 2: Example of ARPAbet character entries and corresponding IPA for three
productions of the word "dog" in the 1) Standard and 2) Customized pronunciation

dictionaries

Word Standard Customized IPA
D AO1G dog

dog DAO1G DAO1 do
D AA1 dee

Training of acoustic models

Many widely used forced aligners have been pre-trained on a large speech dataset,
and re-training is either impossible (e.g., FAVE, Rosenfelder et al. 2011) or difficult
(e.g., MAUS, Shiel 2004). One advantage of using a trainable aligner is that the data
that the researcher wishes to align can be used to train the aligner directly (Gorman,
Howell, and Wagner 2011; McAuliffe et al. 2017). This has been recommended

before as a potential way to improve alignment accuracy (McAuliffe et al. 2017).2 An

1 ARPAbDet is a standard set of phonetic symbols for speech recognition. See further explanation at
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

2 Note that training on the same data is an acceptable approach for forced alignment, where the goal
of the task is not necessarily to generalize the acoustic model results to new speech data, but rather
to obtain the best alignment for the given dataset. This is in contrast with the notion of training and
testing for ASR and machine learning tasks, in which the goal of training is to develop acoustic
models that will perform accurately for new datasets. In this case, researchers will generally avoid
testing their models on the same data that were used for training in order to avoid over-fitting.

10



Automatic analysis of child speech

open question is whether this is the best way to train an aligner - in particular when
one has a small data set - or whether using other data sets that are larger is better -
even if they are unlike the data of interest. This is one of the questions we set out to
test. It is particularly relevant for small data sets of child speech that are very unlike
the large data sets of adult speech normally available, for example in pre-trained
systems. The input training data is likely to affect the alignment accuracy because it
helps the aligner identify likely acoustic representations of the phones-to-be-aligned
(McAuliffe et al. 2017). Alignment using an acoustic model that is trained on speech
that is highly dissimilar from the speech-to-be-aligned may be less likely to lead to
accurate output. However, if there is too little speech data on which to train, even if
it has a high degree of similarity to the speech-to-be-aligned, the acoustic models
generated during the training stage may not have enough exemplars to produce
consistently reliable boundary predictions. The present study included four TRAINING
conditions designed to vary 1) in acoustic similarity to the child speech-to-be-

aligned and 2) inversely, in the amount of data used for training.

The four TRAINING conditions were as follows: Adult-only (AO) training included
acoustic models trained on approximately ten hours of North American English
adult laboratory speech, which are the default models distributed with the
Prosodylab-Aligner (Gorman, Howell, and Wagner 2011). Adult-child (AC) training
included a combination of adult laboratory data (the same as for AO) and a subset of
child data from both corpora (approximately six hours of audio in total). Child-
general (CG) training included all child data from the two corpora (approximately
seven hours of audio) and no adult data. Child-specific (CS) training included
acoustic models trained only on the specific corpus to-be-aligned (Julia or
Paidologos). That is, training of acoustic models in this final condition was restricted

to the exact data that would be aligned.

Phonetic segments

We analyzed voiceless stops and sibilants as well as vowels to determine whether

the phonetic class yielded differences in forced alignment accuracy. Consonants of

11
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interest occurred word-initially for Paidologos, and in multiple word positions for
Julia. In the case of the Julia corpus, there were two possible sets of segmental
transcriptions. Alignments using the Standard pronunciation dictionary contained
only target-like segmental transcriptions, regardless of whether the actual
production was realized as target-like. On the other hand, the Customized
pronunciation dictionary contained transcriptions of utterances exactly as they had
been phonetically transcribed for that child. For example, in the case that a sibilant
/s/ was phonetically realized as a /t/, it would be analyzed as a /t/ in alignment
conditions utilizing the Customized dictionary, and analyzed as an /s/ in alighment

conditions using the Standard dictionary.
Manual segmentation

Manual segmentations were collected for both corpora for comparison to the
automatic segmentations. For Julia, manual segmentation of voiceless stops,
voiceless sibilants, and vowels was completed by research assistants using
conventional criteria in Praat (Boersma & Weenink 2011). Phoneme boundaries
that were too difficult to determine due to background noise or ambiguity in the
signal (for example, two stops with no release between them) were discarded. For
Paidologos, manual segmentations of word-initial consonants and the following

vowels were provided with the corpus.3
Comparisons

Manual and automatic segmentations were compared across each of the TRAINING
and DICTIONARY conditions for all segments of interest. For julia, four TRAINING
conditions by two DICTIONARY conditions led to eight total alignment conditions.
Paidologos was aligned under four conditions, as alignment didn’t vary by

dictionary. Two broad measures of accuracy were included for analysis: 1)

3 The annotations provided with Paidologos were meant to capture an approximation of the
segment’s boundaries (Beckman, personal communication, 2015). For the analyses in Part 1, this is
sufficient to capture the approximate accuracy of forced alignment. For a more detailed analysis
involving more precise segment boundaries, annotation was redone on a subset of the data for Part 2.

12
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alignment accuracy, designed to capture whether the aligned segments overlapped
with the corresponding manual alignment, and 2) temporal accuracy, which
captured differences in duration and boundary placements between the overlapping

aligned segments and the corresponding manual alignments.

Alignment accuracy was measured by the proportion of force-aligned segments that
occurred in approximately the correct location. The operational definition of
“approximately correct” for the present study was as follows: the force-aligned
segment overlapped with the midpoint of the corresponding manually-aligned
phone. Such segments were considered “matched” with the true phone.
“Unmatched” force-aligned segments may have overlapped with the beginning or
end of the true phone or may not have overlapped at all, but crucially did not
overlap with the midpoint of the true phone. Figure 1 provides examples of matched
and unmatched force-aligned segments. In these examples, the segmentations in the
second row from the top are manually-aligned, and the phones highlighted in yellow
are force-aligned. The distinction of “matched” versus “unmatched” was chosen to
reflect gross accuracy measures that researchers working with large datasets would
be interested in using in order to facilitate automated analysis. Importantly, this
metric allowed us to identify whether a phone was more or less in the correct
position, and more accurately identify gross alignment errors, which can be an
important component of facilitating semi-automated analysis (Baghai-Ravary, Grau,

& Kochanski 2011).
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(a) Matched (b) Unmatched (c) Unmatched

Figure 1: Alignment examples: Matched and unmatched segments.
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Measures of temporal accuracy provided closer examination of “matched” segments
and included absolute differences of duration, onsets, and offsets between the
matched forced and manual alignments. Many speech science researchers may find
the gross accuracy measure of %-Match to be of greatest interest, though measures
of temporal accuracy are also necessary to evaluate alignment performance in
greater detail, and to compare to previous work evaluating forced-alignment quality
in particular (McAuliffe et al. 2017; DiCanio et al. 2012; Gorman, Howell, and
Wagner 2011; Milne 2014; Renwick et al. 2013; Yuan and Liberman 2011a).

Statistical models

We modeled alignment accuracy as a function of the parameters described above.
We fit one mixed-effects logistic regression of alignment accuracy (matched vs.
unmatched segments) for each of the two corpora (Paidologos and Julia) using the
glmer() function from the lme4 package in R (Bates et al. 2014). We fit one linear
mixed-effects regression for each of the three temporal measures (duration, onset,
offset, log-transformed after adding 0.001 seconds) for each corpus (six linear
models in total) using the Imer() function from Ime4. All categorical variables were
coded with contrast schemes such that the intercept was the grand mean, and all
continuous variables were centered. Therefore, the intercepts of the models
reported below may be interpreted as the predicted value of the response (e.g., %-
Match) when all predictor variables are held at their average values. Main effect
terms may be interpreted as the expected value of the response averaged over other
variables given the random effects. Fixed-effect p-values were calculated using the
Satterthwaite approximation as implemented in the ImerTest package (Kuznetsova,

Brockhoff & Christensen, 2015).
Fixed effects

Fixed-effect predictor variables (identified in SMALL cAPS) in the Paidologos model
included TRAINING, AGE, and SEGMENT. The model fit for Julia included these three

predictor variables in addition to PRONUNCIATION DICTIONARY. All possible interaction

14
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terms were included in order to examine the potential relationship between
variables. A summary of the fixed effects included in Part 1 appears in Table 3. AGE
was treated as a continuous variable and standardized, i.e. centered and divided by
two standard deviations (Gelman & Hill 2007). Discrete variables with more than
two levels, namely TRAINING (four levels) and SEGMENT (three levels), were coded
using Helmert contrasts, which allows the mean of each level to be compared to the
overall mean of the subsequent levels. To investigate the effect of the four TRAINING
conditions on alignment accuracy (A0, AC, CG, CS), the Helmert contrast
interpretations were (1) TRAINING1: acoustic models trained exclusively on adult
speech versus models trained on some or exclusively child speech (A0 versus AC, CG,
CS), (2) TRAINING2: models trained partially on adult speech versus exclusively on
child speech (AC versus CG, CS), and (3) TRAINING3: models trained on all children
(from both corpora) versus the specific child/children to be aligned (CG versus CS).
The interpretations of the contrasts for SEGMENT (vowel, sibilant, stop) were as
follows: (1) SEGMENT1: vowels versus consonants and (2) SEGMENTZ: sibilants versus
stops. PRONUNCIATION DICTIONARY was coded using sum contrasts (Standard versus
Customized). Main effects and two-way interactions of interest are reported here.
For greater detail (including two-way interactions not explicitly reported in this

text), see the supplementary materials.
Random effects

All models for Paidologos included by-speaker and by-word random intercepts, as
well as all possible by-speaker random slopes (training and segment) in order to
account for variability beyond that captured by the alignment parameters. Further
random slopes led to problems with model convergence and were therefore
omitted, at the risk of anti-conservative p-values (Barr et al. 2013). The random
effects structure for Julia included all possible by-utterance random slopes and
intercepts (by-speaker random effects were not possible because this corpus

contained the longitudinal speech of a single child).

15
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Table 3: Summary of fixed effects included in regression models for Part 1.

Predictor Sub-comparisons Description

TRAINING TRAINING1 Adult-only vs. (Adult-child, Child-general, Child-
specific)
TRAINING2 Adult-child vs. (Child-general, Child-specific)
TRAINING3 Child-general vs. Child-specific
AGE NA Continuous centered variable (2;0 - 5;0)
SEGMENT SEGMENT1 Vowels vs. consonants
SEGMENTZ2 Stops vs. sibilants
DICTIONARY NA Standard vs. customized
Results

Alignment accuracy: %-Match

%-Match refers to the percentage of force-aligned segments that overlapped with
the midpoint of the correct hand-aligned segment. A “matched” segment thus was
force-aligned in approximately the correct location relative to the true (manually-
aligned) segment. Figure 2 shows how the proportion of matched segments depends
on the variables of interest in the empirical data. Fixed effects for the statistical
models for Paidologos and Julia are reported in the supplementary materials (Table

1).
Training

For both corpora, training on adult speech led to poorer accuracy than training on
child speech and can be summarized as follows: Adult-only < Adult-child < Child
speech only. The distinction between training on adult versus child speech training is
captured by TRAINING1 and TRAININGZ, which were significant for both corpora

(Paidologos: TRAINING1: f§ = -1.185, p <0.001; TRAINING2: § = -0.643, p <0.001; Julia:

TRAINING1: ,@ = -1.02, p <0.001; TRAININGZ: ,3’ = -1.044, p <0.001). With regards to
training on child speech, captured by TRAINING3, training exclusively on the speech-

to-be-aligned led to better accuracy than training on child speech in general for

16
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Paidologos (,f\? =-0.718, p <0.001) but a significant difference was not found for Julia.

(8 =0.067,p =0.3).
Age

Alignment accuracy improved with AGE for both corpora (Paidologos: ﬁ’ = 0.427, p
<0.001; Julia: ,@ = 0.655, p <0.001). AGE did not interact with TRAINING for any of the
comparisons with the exception of TRAINING1 for Paidologos (f? = 0.191, p = 0.02),
indicating that, for the most part, the age of the child did not alter how much of an

impact training data improved alignment accuracy (except in the case of training

containing exclusively adult speech).
Segment

For clarity and ease of interpretation, only main effects of SEGMENT are reported in
the results. For more detail on interactions involving the type of SEGMENT aligned, see
the supplementary materials. The pattern of most accurately aligned segments was
reversed for the two corpora: for Paidologos, vowels were aligned with the greatest
accuracy, followed by stops and then sibilants, while for Julia, the order of accuracy

was sibilants, stops, vowels. This is captured by a positive main effect of SEGMENT1
and a negative main effect of SEGMENT2 for Paidologos (SEGMENT1: ﬁ = 0975, p
<0.001; SEGMENTZ2: ,@ = -1.455, p <0.001) and the opposite pattern for julia

(SEGMENT1: f§ = -0.299, p <0.001; SEGMENT2: 8 = 0.361, p <0.001).
Dictionary
The difference between the CMU dictionary (Standard) and a Customized dictionary

based on the phonetic transcription was tested for julia. Overall, the Customized

AN
dictionary led to better alignment accuracy than the Standard version (f =-0.477, p
<0.001). All possible interactions with DICTIONARY were found to be significant. A
significant interaction with AGE suggests that, while alignment accuracy for both

dictionaries improved as the child aged, they became more similar as Julia’s age
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increased (ﬁ’ = 0.206, p <0.001). Presumably this reflects the fact that the
Customized dictionary was tailored to Julia’s specific utterances at each age,
accounting for less room for improvement overall. It could also be due to her
productions becoming more adult-like as she aged. Not all training conditions
benefited equally from the Customized dictionary, accounting for significant

interactions between all TRAINING and DICTIONARY comparisons (DICTIONARY:TRAINING1

£ =0.163, p = 0.004; TRAINING2: 8 = 0.271, p <0.001; TRAINING3: §8 = 0.179, p = 0.006).
The more customized the training data, the greater benefit the customized
pronunciation dictionary provided. For example, Child-specific training saw the
greatest improvement between the standard and customized dictionaries (41% to
68% matched segments, a difference of 27%), whereas Adult-only training

benefitted only by 11% (25% to 36%).
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Figure 2: Average percentage of matched segments (%-Match) for Part 1 by training,

corpus, segment, and pronunciation dictionary (applicable to Julia only).
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Temporal accuracy of matched segments

Absolute duration differences as a function of AGE , SEGMENT, TRAINING and DICTIONARY
are reported in Figure 3, and absolute boundary differences (segment onsets and
offsets) are reported in Figure 4. All analyses were done on log-transformed data.
Fixed effects for each model of temporal differences between force-aligned and
manually-aligned segments, including all main effects and interactions of all
variables of interest, are reported in full in the supplemental materials (Tables 2 and
3). Since segment duration is often a measure of interest for speech researchers, the
absolute differences between force-aligned and manually-aligned durations are also
important to evaluate. Theoretically, differences between the accuracy of aligning
segment onsets and offsets are of interest for researchers interested in phenomena

that may occur at phoneme boundaries in child speech.
Absolute duration differences of matched segments

The absolute differences between the durations of force-aligned segments and their
corresponding (matched) manual alignments are reported in this section. Training
on adult speech led to poorer accuracy (greater durational differences) than
training on more specific child speech data. Consistent with %-Matched, the pattern
is the same for both corpora: Adult-only < Adult-child < Child-general < Child-

specific. This is captured by the significant main effects of all TRAINING comparisons
(Paidologos, TRAININGL: § = 0.225, p = <0.001; TRAINING2: § = 0.119, p = <0.001;
TRAINING3: f; =0.417, p = <0.001; Julia, TRAINING1: ,3’ =0.322, p =<0.001; TRAININGZ: f)\’

= 0.4, p = <0.001; TRAINING3: ﬁ =0.213,p =<0.001).

Despite variability shown in Figure 3, overall, durational differences significantly

decreased with AGE for Julia (ﬁ’ = -0.276, p = <0.001) but not for Paidologos (Z\? = -
0.063,p =0.064).
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Overall, the age effect was not modulated by the type of training, as demonstrated
by the absence of significant interactions between AGE and TRAINING. An exception to

this is TRAINING3 for Paidologos, which contrasts the two child-speech-only TRAINING

conditions (ﬁ = 0.216, p = <0.001). As can be seen in Figure 3, the Child-general
training condition demonstrates an overall flatter rate of improvement (decrease in
durational differences) compared to the Child-specific training. That is, AGE had a

greater effect on alignments with Child-specific than Child-general training.

Force-aligned vowels demonstrated smaller durational differences than consonants
for Paidologos, though the opposite was observed for Julia. For Paidologos, sibilants

showed greater durational differences than stops, but did not significantly differ for
Julia (Paidologos, SEGMENTL: 8 = -0.157, p <0.001; SEGMENTZ: 8 = -0.093, p = 0.005),

Julia, SEGMENT1: ,3’ = 0.449, p <0.001; SEGMENTZ: f)\’ = -0.055, p 0.281). Interactions
between SEGMENT1 and AGE for both corpora indicate that vowels and consonants
were affected by age differently across the two corpora. Age had a greater effect on

consonants than vowels for Julia, and a smaller effect on consonants than vowels for

Paidologos (Paidologos: ﬁ =-0.236,p <0.001; Julia: ﬁ =0.24,p =0.013).

There was no main effect of DICTIONARY for Julia, indicating that the specificity of the
transcription provided did not significantly affect the forced-aligned phoneme
durations. There were no significant interactions between TRAINING or AGE and
DICTIONARY, though significant interactions between DICTIONARY and SEGMENT

indicated that, overall, the Customized dictionary led to less accurate alignment of
AN
vowels and stops compared to better alignment of sibilants (SEGMENT1: 5 = -0.098, p

= 0.006; SEGMENTZ2: ﬁ’ =0.096, p = 0.009).
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Figure 3: Average absolute duration differences for Part 1 by training, corpus,

segment, and pronunciation dictionary (dictionary applicable to Julia only).

Absolute boundary differences of matched segments

For simplicity, only main effects are reported in this section, and emphasis is placed
on comparisons that differed between onsets and offsets. Full coefficient tables for
absolute onset and offset differences, including all main effects and interactions of

all variables of interest, can be found in the supplementary materials (Tables 3 & 4).

As with %-Match and durational differences, in general, training on adult speech
yielded worse outcomes (significantly larger boundary errors). Almost all TRAINING
conditions demonstrated a significant main effect on both onset and offset
differences for both corpora, with the exception of TRAINING3 onsets and TRAINING1
offsets for Paidologos. These findings mirror the global pattern seen in Figure 4, of
lower absolute differences for more specific (i.e., less adult speech) training. As seen
previously, the speech of older children was generally also aligned with greater

accuracy with regards to boundary differences. However, age did not impact the
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accuracy of consonant onsets for Paidologos, which were more poorly identified by

the aligner, as seen in Figure 4, see discussion below.

Across the different segment types, differences emerged between how well onsets
and offsets were aligned. Specifically, for Paidologos, vowel onsets were more
accurately aligned than vowel offsets, whereas consonant onsets were more poorly
aligned than offsets, as can be seen in the bottom panels of Figure 4. This pattern
was not systematic for Julia. One possible reason for this discrepancy may have been
the elicitation method in Paidologos: the consonants studied here all occurred word
initially, which may have been a more difficult task for the aligner. It appears that CV
boundaries in particular, that is, consonant offsets and vowel onsets, may have been

easier for the aligner to detect.

Finally, the Customized dictionary for Julia led to improvements in boundary
accuracy, consistent with improvements in other accuracy measures presented

above.
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Figure 4: Average absolute differences for segment onset and offsets for Part 1 by

training, corpus, segment. Only the standard dictionary is pictured for simplicity.
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In summary, overall alignment accuracy as measured by general phone
identification (%-Match) and temporal accuracy measures (durational and
boundary differences) was better with older children and when using training data
that were similar to the speech being aligned (i.e., more child data). There was a
wide range of error rates, ranging from < 25% to 100% matched segments across
conditions, and temporal differences ranging from 0 milliseconds to >1 second.
These errors are of interest as measures of alignment quality, but do they actually
affect the conclusions researchers would draw from analyzing these data? We turn

to this question in Part 2.

Part 2: Using forced alignment to examine spectral

properties of child sibilant productions

Bang et al. (2017) examined word-initial /s/ productions from children included in
the Paidologos corpus and found an increase in spectral center of gravity (CoG) in
older children, as well as a divergence in CoG in male and female children with older
female children producing higher CoG than younger children and older male
children. Using the acoustic measures obtained from the original manual
segmentation from Bang et al. (2017) as a comparison, Part 2 of the present study
sought to determine whether forced alignment, without additional manual

adjustment, could be used to replicate the results of the original study.

Methods

To replicate the methodology of Bang et al. (2017), we selected two alignment
conditions we considered representative of available options in real-world research
settings: alignments trained on Adult-Only speech, representing the out-of-the-box
acoustic models available with the Prosodylab-Aligner, and Child-Specific speech,
which generated acoustic models by training the aligner on the exact data set to-be-

aligned. Recall that the results from Part 1 identified that overall these conditions
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also represented the worst (Adult-Only) and best (Child-Specific) alignment accuracy
for Paidologos. Comparisons were made to the manual segmentations provided by
Bang et al. (2017), which were slight adjustments made to the segments provided
with the Paidologos corpus. All /s/ segments of interest, regardless of whether they
passed our “matched” accuracy measure, were included. The general pattern
demonstrated in Part 1, namely, that alignments performed using acoustic models
generated with Child-Specific training led to more accurate alignments than those
with Adult-Only training, held for the subset of /s/ segments of interest in this

section.

Acoustic analyses: Spectral center of gravity

The first spectral moment, center of gravity (CoG) was obtained from a DFT
(Discrete Fourier Transform) spectrum computed by averaging 6 spectra of 15 ms
evenly distributed across the middle 80% across the fricative (Shadle, Koenig, and
Preston 2011), as was done in Bang, Clayards, and Goad (2017). This procedure was
repeated once for each of the TRAINING conditions as well as for the manual

alignment, resulting in three CoG measures per fricative token.

Statistical models

We used linear mixed effects regression (refer to Part 1 model details) to model CoG
of /s/ as a function of AGE and ALIGNMENT: Manually-aligned, Adult-trained (force-
aligned, trained on adult lab speech), and Child-trained (force-aligned, trained on the
same child speech to-be-aligned). In order to replicate the analysis performed in
Bang, Clayards, and Goad (2017), the model also included fixed effects of speaker SEx
and the interaction between AGE and SEX to determine if differences in male and
female speakers increased with age. AGE and SEX were standardized as previously

described (treated as a continuous variable and standardized).

All models included by-word and by-speaker random intercepts to account for the

variability in the acoustic measures beyond the effects of the primary variables of
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interest. Additionally, we included all possible by-word and by-speaker random
slopes to account for variability among items and speakers. Correlations between

random effects terms were omitted to facilitate model convergence.

Results

Center of gravity

CoG was measured for all /s/ tokens of interest (regardless of alignment accuracy)
across three ALIGNMENT conditions (Manual alignment, Adult-trained forced
alignment, Child-trained forced alignment). Figure 5 shows how CoG varies by
alignment condition and child age and gender. Full model results are reported in
Table 5 in the supplementary materials. There was no main effect of ALIGNMENT (p >
0.5), nor were any interactions involving ALIGNMENT (p > 0.25 for all possible
interactions). That is, the overall CoG measured using both forced-alignments,

regardless of alignment accuracy, was similar to the CoG measured from the manual

alignments. A significant positive effect of AGE (f? = 1097.294, p = 0.001) indicates

that, overall, older children produced /s/ with higher CoG. However, the significant

interaction between AGE and SEX (ﬁ = -1797.488, p = 0.006) reveals that CoG
continued to increase with age for females, but decreased for males. This can be
seen in Figure 5, in which CoG diverges for males and females after age three. These

findings replicate the results of Bang et al. (2017).

No significant interactions between ALIGNMENT and AGE or SEX were found; changes in
CoG as a function of these speaker variables were captured equally well by all
ALIGNMENT conditions. That is, a similar pattern of CoG increasing with age and
diverging for males and females after the age of three was found across all

alignment conditions.
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Figure 5: Mean CoG values for manually- and force-aligned /s/ (Adult-trained and

Child-trained). Error bars represent standard error.

Summary: Replication of Bang, Clayards, and Goad (2017)

Despite inaccuracies in alignment as seen in Part 1 the use of forced alignment -
even when trained only on adult data - did not significantly affect the conclusions
made by analyzing the CoG of the /s/ segments of interest. In other words, the same
qualitative results for Bang et al. (2017) would have been obtained with either
manually-aligned or force-aligned data. This is interesting given that we found that
for the alignments trained on adult data only, only a small percentage met the
“Match” criterion (< 25%). Thus, it appears that force-aligned segments need not
overlap with the midpoint of the true phone (which constitutes a positive “match”)
in order to capture an accurate representation of the spectral frequency

distribution. We explore possible underlying reasons for this in the Discussion.
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Discussion

In this study we explored the consequences of changing specific parameters of
forced alignment on alignment accuracy, as well the viability of using forced
alignment to facilitate acoustic analysis in child speech. The findings described
above demonstrate that modifying inputs to forced alignment do indeed have
quantifiable ramifications on the accuracy of the segmentation. However, despite
inaccuracies in alignment (and especially for the standard out-of-the-box pre-
trained alignment), forced alignment allowed replication of the findings of Bang et

al. (2017) regarding CoG in /s/ as a function of age and sex in young children.

Overall, increased alignment accuracy (as measured by %-Match) was found with
the Paidologos corpus (picture-prompted single word repetition) compared to the
Julia corpus (naturalistic spontaneous speech). While there are too many
uncontrolled differences between these two corpora to draw concrete conclusions
for the asymmetry, certain variables are likely to have had an effect. First of all,
spontaneous speech is a more challenging task for forced alignment in general, in
large part because reductions and substitutions in continuous speech reflect a
different acoustic realization than what may be expected from the canonical
pronunciation dictionary (Benzeghiba et al. 2007). Single-word utterances are more
isolated acoustic events than running speech, and automated methods may more
easily be able to determine word and segment boundaries. Secondly, a naturalistic
setting, such as a play-based interaction in a room with toys in which the julia
recordings took place, may allow for greater levels of background noise as the child

moves around and plays with objects.

Regarding customizable components of forced alignment, transcription (i.e.,
dictionary) and training both led to better performance when they were more
similar to the audio to be aligned. When a full narrow phonetic transcription of the
child speech was available, as was the case with Julia, a customized pronunciation
dictionary specific to the child’s actual utterances led to better performance. This is

not surprising, as children may use different phonetic realizations to approximate
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typical adult speech productions. Substitutions and omissions typical in early
speech development may mean that a transcription representing the adult target
utterance may not accurately correspond to the child’s production. A more specific
transcription allows forced alignment to more accurately map the transcription to
the acoustic signal, thereby improving its performance. Speech from older children
was also aligned with greater accuracy. This too is in part related to the reduction in
overall variability in the distortions and phonetic realizations of a child as they

begin to produce more adult-like speech.

Of all training conditions, input training data containing entirely child speech
consistently led to better outcomes in alignment accuracy for both corpora. In the
present study, the similarity of the training audio to the audio-to-be-aligned was of
greater importance than other benefits that adult speech might yield, such as
greater consistency or clearer targets. That is, training on the specific type of speech
to be aligned captured the acoustic properties of child speech that differ from adult
speech. These results support similar findings in the literature on understudied
populations, that the more similar the phones-to-be-aligned are to the phones on
which alignment is modeled, the more accurate the output (e.g, Wilpon and
Jacobsen 1996 for children and the elderly, and DiCanio et al. 2012; DiCanio et al.
2013 for endangered languages).

A notable asymmetry existed between the two corpora for the Child-specific training
data. Child-specific training for Julia contained the spontaneous speech of a single
child, and overall less audio compared to Child-specific training for Paidologos,
which contained the speech of multiple children and more speech overall. This could
in part explain why Child-specific failed to provide additional benefit over Child-
general for Julia, despite doing so for Paidologos. It is presently unknown at what
point the amount and quality of the training data fails to lead to better alignment.
McAuliffe et al. (2017) examined this question in adult laboratory speech,
concluding that, while further investigation is required, training on more similar

data often yields improvement over greater quantities of data. Future research
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would benefit from examining different training conditions and more precisely

controlling for the amount of audio data provided for training.

The finding that more specific training led to improvements in alignment accuracy
overall held for the sibilant analysis in Part 2. Curiously, regardless of the finding
that the majority of /s/ segments did not overlap with the midpoint of the “true”
segment in alignments trained on adult speech (<25% “match”), both alignment
conditions were still able to lead to replication of the CoG measures obtained by
Bang et al. (2017). To explore the potential underlying causes of how mediocre
automatic alignments could still yield the same results as a study using manual
alignments, we pursued a more detailed analysis of our /s/ alignments. Specifically,
we examined two aspects of alignment: 1) durational measures and 2) whether or
not the segment of interest overlapped in some way, but perhaps not in a way that
was captured by the %-Match criterion. Figure 6 demonstrates an asymmetry in the
two alignment conditions with regards to duration: /s/ segments aligned in the
Adult-trained condition were much longer than those aligned in the Child-trained
condition. Manually-aligned /s/ segments were shortest of all. This indicates that,
while both force-aligned conditions led to longer /s/ durations, the Child-trained
/s/ were more “child-like” with regards to their duration. This finding thus does not
explain why CoG measures, which are calculated over the whole duration of a

segment, were so similar across conditions.
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Figure 6: /s/ Duration (ms).

We thus next explored whether a different measure of accuracy aside from %-Match
would help to explain the CoG findings. Specifically, we looked at whether the
midpoint of the aligned segment occurred within the boundaries of the true phone.
In contrast with the Match criterion, where the midpoint of the true phone
overlapped with the aligned segment, this new criterion, herein referred to as %-
Contained, provided a less stringent measure of accuracy. An example of this
appears in Figure 1, panel b. Figure 7 demonstrates that, while a large difference
existed between the two training conditions for %-Match, nearly identical
performance was found with %-Contained. That is, the majority of force-aligned /s/
segments, regardless of training, did indeed overlap (at the force-aligned midpoint)
with the manual alignment. The finding that both the more and less specific training
conditions yielded the same pattern for CoG is likely a consequence of this: even
when the force-aligned /s/ did not land in the middle of the correct phone, it needed
only to overlap with at least part of intended signal to reproduce the results of Bang,

etal. (2017).
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Figure 7: More (a) and less (b) stringent measures of accuracy for both training

conditions in Part 2.

Recent work has suggested that fricative productions are not stable, and that
acoustic variability is present throughout the time-course of sibilant production
(Iskarous, Shadle, and Proctor 2008). Nonetheless, the variability did not hinder the
acoustic analysis presented in the current study. When CoG was extracted from
within the boundaries of the segmentation, both Adult- and Child-trained alignments
yielded the same pattern of results as the more accurate manual segmentations.
This may indicate that CoG is a robust spectral measure and perhaps is not as
sensitive to dynamic changes across the course of the fricative. We did not explore
other acoustic cues or phonemic classes in the present study. As such, this finding is
not necessarily generalizable to the use of automation in all cases. Given the poor
performance regarding %-Match for the Adult training in particular, analyses using
acoustic measures more sensitive to accurate temporal demarcations may be less
likely to be replicated than analyses using CoG. Nevertheless, the task of forced
alignment is to identify the part of the acoustic signal corresponding to the segment

to be aligned. The replication of the sibilant acoustic analysis affirms that even in
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variable speech, forced alignment is mostly successful in this task. That is, it is at
least successful enough to yield a correct analysis when averaging over enough

tokens.

In all cases of automatic segmentation, there were instances of gross alignment
errors such that the aligned segment did not capture the relevant part of the
acoustic signal. This is not uncommon with automation of very large speech corpora,
especially in the case of background noise, untranscribed or inaccurately
transcribed speech. Baghai-Ravary, Grau, and Kochanski (2011) sought to
systematically address gross alignment errors in the Spoken British National Corpus
by developing algorithms designed to detect suspicious alignment anomalies and
alert the user to alignment failures. Such methods would be of value when
integrating the use of forced alignment in very large corpus studies of highly
variable speech. Further work is needed to conduct a more detailed exploration of
alignment parameters to optimize their performance with child speech. In this study
we did not control for amount of training data, or length of speech data to be
aligned. Nevertheless, the findings of the present study suggest the promise of semi-
automation for phonetic analysis of child speech and its viability as a tool for speech
researchers. Despite limitations, the parameters identified here may improve the
accuracy of forced alignment and allow for the investigation of much larger-scale
theoretical questions related to variable speaker populations. Most importantly,
training on the data-to-be-aligned was quite successful, even with small amounts of
data, and phonetic transcriptions also provided clear gains. However, even when
using an out-of-the-box forced aligner with poor alignment performance on child
speech, forced alignment was still able to reproduce CoG results found with manual
segmentation, underscoring the promise of semi-automation for future
investigations of child speech. Currently, forced-alignment can be performed with
freely available software that can be downloaded on any computer and used
without advanced technical skills. As technology advances, aligners will only

become easier to use and even more accurate than what we found here.
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Supplemental Materials

Supplementary Material Table 1: Summary of fixed-effects coefficients in the logistic
regression models of %-Match between manually and force-aligned segments (Part 1).

%-Match: Paidologos

Estimate Std. Error zvalue Pr(>/z/)

Intercept 1.447 0.096 15.005 <0.001
TRAINING1 -1.185 0.042 -28.221 <0.001
TRAINING2 -0.643 0.037 -17.206 <0.001
TRAINING3 -0.718 0.05 -14.346 <0.001
AGE 0.427 0.107 4.001 <0.001
SEGMENT1 0.975 0.063 15.459 <0.001
SEGMENT?2 -1.455 0.099 -14.734 <0.001
TRAINING1:AGE 0.191 0.082 2.326 0.02
TRAINING2:AGE 0.084 0.074 1.127 0.26
TRAINING3:AGE -0.19 0.103 -1.839 0.066
TRAINING1:SEG1 0.782 0.085 9.25 <0.001
TRAINING2:SEG1 1.333 0.076 17.622 <0.001
TRAINING3:SEG1 0.612 0.095 6.435 <0.001
TRAINING1:SEG2 -1.922 0.127 -15.121 <0.001
TRAINING2:SEG2 -0.335 0.095 -3.517 <0.001
TRAINING3:SEG2 -1.107 0.15 -7.391 <0.001

AGE:SEG1 -0.387 0.124 -3.126 0.002

AGE:SEG2 -0.123 0.175 -0.703 0.482

%-Match: Julia

Estimate Std. Error zvalue Pr(>/z/)
Intercept -0.307 0.056 -5.526 <0.001
TRAINING1 -1.02 0.071 14.385 <0.001

TRAINING2 -1.044 0.059 -17.841 <0.001
TRAINING3 0.067 0.064 1.036 0.3

AGE 0.655 0.107 6.145 <0.001
SEGMENT1 -0.299 0.075 -3.958 <0.001
SEGMENT?2 0.361 0.08 4.497 <0.001
DICTIONARY -0.477 0.024 -20.092 <0.001
TRAINING1:AGE -0.047 0.14 -0.332 0.74
TRAINING2:AGE 0.005 0.119 0.044 0.965
TRAINING3:AGE -0.013 0.132 -0.103 0.918
TRAINING1:SEG1 0.496 0.138 3.595 <0.001
TRAINING2:SEG1 0.774 0.122 6.363 <0.001
TRAINING3:SEG1 -0.098 0.138 -0.712 0.477
TRAINING1:SEG2 -0.427 0.147 -2.907 0.004
TRAINING2:SEG2 -0.82 0.137 -5.965 <0.001
TRAINING3:SEG2 0.64 0.156 4.097 <0.001
AGE:SEG1 -0.497 0.147 -3.373 <0.001
AGE:SEG2 0.352 0.175 2.006 0.045
TRAINING1:DICTIONARY 0.163 0.056 2.896 0.004
TRAINING2:DICTIONARY 0.271 0.056 4.834 <0.001
TRAINING3:DICTIONARY 0.179 0.064 2.776 0.006
AGE:DICTIONARY 0.206 0.049 4.195 <0.001
SEG1:DICTIONARY -0.361 0.05 -7.159 <0.001
SEG2:DICTIONARY -0.204 0.057 -3.615 <0.001
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Supplementary Material Table 2: Summary of fixed-effects coefficients in the linear
regression models of absolute duration differences between manually- and force-aligned
segments (Part 1). All temporal measures were log-transformed after adding 0.001 seconds.

Absolute Duration Differences: Paidologos

Estimate Std. Error df tvalue Pr(>/z[)
Intercept -3.502 0.03 100.261 -115.748 <0.001
TRAINING1 0.225 0.019 163.408 11.783 <0.001
TRAINING2 0.119 0.016 28862.737 7.507 <0.001
TRAINING3 0.417 0.018 27808.854 23.254 <0.001
AGE -0.063 0.034 85.881 -1.876 0.064
SEGMENT1 -0.157 0.028 83.28 -5.708 <0.001
SEGMENT2 -0.093 0.033 142.126 -2.836 0.005
TRAINING1:AGE -0.031 0.038 170.033 -0.814 0.417
TRAINING2:AGE 0.03 0.032 28068.547 0.912 0.362
TRAINING3:AGE 0.216 0.039 23174.837 5.493 <0.001
TRAINING1:SEG1 -0.209 0.039 133.251 -5.325 <0.001
TRAINING2:SEG1 -0.269 0.029 28871.995 -9.334 <0.001
TRAINING3:SEG1 -0.411 0.034 28259.369 -12.277 <0.001
TRAINING1:SEG2 -0.032 0.053 22294.015 -0.61 0.542
TRAINING2:SEG2 0.605 0.044 28783.282 13.861 <0.001
TRAINING3:SEG2 0.101 0.048 26513.941 2.092 0.036
AGE:SEG1 -0.236 0.054 86.503 -4.366 <0.001
AGE:SEG2 -0.1 0.058 95.81 -1.72 0.089
Absolute Duration Differences: Julia
Estimate Std. Error df tvalue Pr(>/z[)
Intercept -3.101 0.029 612.3 -105.405 <0.001
TRAINING1 0.322 0.051 388.764 6.305 <0.001
TRAINING2 0.4 0.041 434,898 9.661 <0.001
TRAINING3 0.213 0.039 360.645 5.487 <0.001
AGE -0.276 0.059 696.991 -4.673 <0.001
SEGMENT1 0.449 0.049 3001.823 9.148 <0.001
SEGMENT2 -0.055 0.051 2286.549 -1.079 0.281
DICTIONARY 0.015 0.016 3815.31 0.926 0.354
TRAINING1:AGE -0.046 0.106 444,613 -0.431 0.667
TRAINING2:AGE 0.032 0.088 583.045 0.362 0.717
TRAINING3:AGE 0.017 0.082 464.87 0.204 0.839
TRAINING1:SEG1 0.136 0.103 848.744 1.314 0.189
TRAINING2:SEG1 0.152 0.088 830.094 1.722 0.085
TRAINING3:SEG1 0.026 0.088 783.914 0.298 0.765
TRAINING1:SEG2 -0.095 0.111 966.268 -0.857 0.391
TRAINING2:SEG2 -0.172 0.095 1177.033 -1.805 0.071
TRAINING3:SEG2 -0.055 0.086 1246 -0.646 0.518
AGE:SEG1 0.24 0.097 2940.777 2.479 0.013
AGE:SEG2 -0.106 0.112 2259.119 -0.95 0.342
TRAINING1:DICTIONARY -0.069 0.041 3637.522 -1.684 0.092
TRAINING2:DICTIONARY -0.07 0.038 3604.929 -1.841 0.066
TRAINING3:DICTIONARY -0.01 0.038 3660.482 -0.254 0.8
AGE:DICTIONARY -0.025 0.034 3909.273 -0.744 0.457
SEG1:DICTIONARY -0.098 0.035 3711.755 -2.771 0.006
SEG2:DICTIONARY 0.096 0.037 3858.164 2.601 0.009
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Supplementary Material Table 3: Summary of fixed-effects coefficients in the linear
regression models of absolute onset differences between manually and force-aligned
segments (Part 1). All temporal measures were log-transformed after adding 0.001 seconds.

Absolute Onset Differences: Paidologos

Estimate Std. Error df tvalue Pr(>[z])
Intercept -3.658 0.023 91.491 -162.379 <0.001
TRAINING1 0.114 0.014 173.028 8.187  <0.001
TRAINING2 0.26 0.011 22922.767 23.591 <0.001
TRAINING3 -0.008 0.013 94.481 -0.627 0.532
AGE -0.019 0.023 87.53 -0.831 0.408
SEGMENT1 -0.967 0.018 84.336 -54.765 <0.001
SEGMENT?2 -0.304 0.024 131.444 -12.442 <0.001
TRAINING1:AGE 0.027 0.027 180.13 0.994 0.322
TRAINING2:AGE 0.067 0.023 9360.133 2.98 0.003
TRAINING3:AGE 0.084 0.028 110.903 3.052 0.003
TRAINING1:SEG1 -0.123 0.022 17183.318 -5.48  <0.001
TRAINING2:SEG1 0.296 0.02 22608.531 14.753 <0.001
TRAINING3:SEG1 -1.061 0.027 91.421 -39.627  <0.001
TRAINING1:SEG2 0.206 0.039 116.183 5.354  <0.001
TRAINING2:SEG2 0.324 0.03 23203.514 10.697  <0.001
TRAINING3:SEG2 0.445 0.035 73.428 12.575 <0.001
AGE:SEG1 -0.153 0.035 88.475 -4.395 <0.001
AGE:SEG2 0.056 0.044 93.568 1.28 0.204
Absolute Onset Differences: Julia
Estimate Std. Error df tvalue Pr(>[z])
Intercept -3.698 0.036 621.086 -102.557  <0.001
TRAINING1 0.164 0.051 347.929 3.235 0.001
TRAINING2 0.286 0.045 471.805 6.338  <0.001
TRAINING3 0.17 0.042 537.732 4.026  <0.001
AGE -0.172 0.072 707.551 -2.391 0.017
SEGMENT1 0.004 0.055 3678.265 0.077 0.938
SEGMENT?2 -0.219 0.058 2664.564 -3.765 <0.001
DICTIONARY 0.044 0.017 3925.275 2.513 0.012
TRAINING1:AGE -0.03 0.106 395.165 -0.286 0.775
TRAINING2:AGE 0.032 0.096 630.408 0.335 0.738
TRAINING3:AGE 0.072 0.089 682.354 0.802 0.423
TRAINING1:SEG1 0.038 0.106 694.531 0.355 0.723
TRAINING2:SEG1 -0.004 0.096 895.034 -0.036 0.971
TRAINING3:SEG1 -0.065 0.096 1100.862 -0.676 0.499
TRAINING1:SEG2 -0.114 0.114 883.196 -0.998 0.319
TRAINING2:SEG2 -0.072 0.104 1255.348 -0.691 0.49
TRAINING3:SEG2 0.049 0.094 1657.812 0.524 0.6
AGE:SEG1 -0.072 0.11 3522.696 -0.655 0.513
AGE:SEG2 0.163 0.128 2593.674 1.272 0.203
TRAINING1:DICTIONARY -0.099 0.044 3669.648 -2.236 0.025
TRAINING2:DICTIONARY -0.078 0.042 3709.765 -1.887 0.059
TRAINING3:DICTIONARY -0.079 0.041 3665.293 -1.917 0.055
AGE:DICTIONARY 0.03 0.037 4010.802 0.808 0.419
SEG1:DICTIONARY -0.005 0.039 3825.13 -0.142 0.887
SEG2:DICTIONARY 0.059 0.04 3964.801 1.477 0.14
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Supplementary Material Table 4: Summary of fixed-effects coefficients in the linear
regression models of absolute offset differences between manually and force-aligned
segments (Part 1). All temporal measures were log-transformed after adding 0.001 seconds.

Absolute Offset Differences: Paidologos

Estimate  Std. Error df tvalue Pr(>/z[)
Intercept -4.098 0.029 74.408 -141.245  <0.001
TRAINING1 -0.01 0.021 132.503 -0.492 0.624
TRAINING2 0.235 0.015 28874.27 16.027  <0.001
TRAINING3 -0.425 0.017 27750.192 -25.687  <0.001
AGE -0.104 0.023 95.549 -4586  <0.001
SEGMENT1 0.744 0.026 85.205 28.463  <0.001
SEGMENT?2 -0.309 0.029 146.656 -10.733  <0.001
TRAINING1:AGE -0.135 0.041 136.274 -3.262 0.001
TRAINING2:AGE 0.001 0.03 28040.038 0.023 0.982
TRAINING3:AGE 0.034 0.036 22807.487 0.943 0.346
TRAINING1:SEG1 -0.382 0.035 129.195 -11.071  <0.001
TRAINING2:SEG1 -0.252 0.027 28874.998 -9.469  <0.001
TRAINING3:SEG1 0.814 0.031 28206.998 26341  <0.001
TRAINING1:SEG2 0.538 0.049 26152.792 10946  <0.001
TRAINING2:SEG2 0.04 0.04 28713.992 0.99 0.322
TRAINING3:SEG2 -0.146 0.045 25493.867 -3.283 0.001
AGE:SEG1 -0.037 0.051 88.28 -0.712 0.478
AGE:SEG2 0.04 0.05 92.555 0.8 0.426
Absolute Offset Differences: Julia
Estimate  Std. Error df tvalue Pr(>[z])
Intercept -3.701 0.027 600.714 -135.604  <0.001
TRAINING1 0.277 0.049 374.772 5.641  <0.001
TRAINING2 0.3 0.039 3725.219 7.677  <0.001
TRAINING3 -0.257 0.042 373.578 -6.125  <0.001
AGE -0.237 0.055 687.875 -4.295  <0.001
SEGMENT1 0.876 0.048 2579.11 18.208  <0.001
SEGMENT?2 0.277 0.049 2062.483 5.627  <0.001
DICTIONARY 0.056 0.016 4013.005 348 <0.001
TRAINING1:AGE 0.113 0.103 428.87 1.101 0.272
TRAINING2:AGE 0.096 0.084 3782.158 1.138 0.255
TRAINING3:AGE -0.146 0.088 478.634 -1.654 0.099
TRAINING1:SEG1 0.209 0.101 766.067 2.064 0.039
TRAINING2:SEG1 0.233 0.085 3628.675 2.736 0.006
TRAINING3:SEG1 0.473 0.093 855.725 5.077  <0.001
TRAINING1:SEG2 -0.123 0.109 941.18 -1.13 0.259
TRAINING2:SEG2 -0.041 0.093 3820.494 -0.446 0.655
TRAINING3:SEG2 0.042 0.09 1231.691 0.464 0.643
AGE:SEG1 0.43 0.095 2598.996 4537 <0.001
AGE:SEG2 -0.382 0.108 2067.486 -3.528  <0.001
TRAINING1:DICTIONARY -0.093 0.042 3817.668 -2.24 0.025
TRAINING2:DICTIONARY -0.134 0.039 3589.272 -3.486  <0.001
TRAINING3:DICTIONARY -0.148 0.039 3939.5 -3.826  <0.001
AGE:DICTIONARY -0.016 0.035 4103.084 -0.458 0.647
SEG1:DICTIONARY -0.077 0.036 3945.178 -2.138 0.033
SEG2:DICTIONARY -0.018 0.037 4034.739 -0.47 0.638
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Supplementary Material Table 5: Summary of fixed-effects coefficients in the linear
regression models of center of gravity differences between manually aligned, adult-
trained force aligned, and child-trained force aligned conditions, as well as child age

and sex (Part 2).

Center of Gravity Differences (Part 2)

Intercept
AGE

SEX

ALIGNMENT1:Adult vs Child
Training

ALIGNMENT2:Manual vs Force-
Aligned

AGE:SEX
AGE:ALIGNMENT1
AGE:ALIGNMENT?2
SEX:ALIGNMENT1
SEX:ALIGNMENT?2
AGE:SEX:ALIGNMENT1
AGE:SEX:ALIGNMENT?2

Estimate

7711.669
1097.294
-333.757

95.616

0.907
-1797.488
-106.682
-132.665
-104.646
40.906
304.039
127.392

Std. Error

214.164
330.431
331.384

80.591

69.794
642.322
161.21
139.612
161.198
139.602
322.42
279.223

df

45.284
80.931
81.101

3225.439

3225.439

76.826
3225.439
3225.439
3225.439
3225.439
3225.439
3225.439

tvalue

36.008
3.321
-1.007

1.186

0.013
-2.798
-0.662

-0.95
-0.649

0.293

0.943

0.456

Pr(>[z[)
<0.001
0.001
0.317

0.236

0.99
0.006
0.508
0.342
0.516

0.77
0.346
0.648
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