Service Service Servi McGill

BACKGROUND

- Tonal contrast in Mandarin Chinese is signaled by various acoustic cues, including but not limited to:
 - **Pitch** (Howie, 1976; Gandour, 1984)
 - Intensity/ amplitude (Chuang et al., 1972; Lin, 1988)
 - **Duration** (Dreher& Lee, 1996; Chuang et al., 1972)
 - Spectral information (Kong & Zeng, 2006)
 - Voice quality (Cao, 2012)

Mandarin Tones	T1	T2	T3	T4
Chao number	55	35	214	51
Description	High level	Low rising	Low dipping	High falling

- We do not know how much information is available from the low-level acoustic signals, prior to forming any linguistic units
- Low-dimensional representation of speech (e.g. Weber et al., 2015 on phonemes) extracted from the Bottleneck Layer trained in Deep Neural Networks (DNNs) show similar properties to linguistic features (e.g. F1/F2 for vowels)
- Representations learnt in DNNs can be used to understand various phonological contrasts

THREE CUES

Trained on bi-directional LSTMs without BN layer.

	Model (data condition)	Accuracy*	
1)	Natural speech	77.3%	
2)	no Pitch	67.2%	← Most importa
3)	no Intensity	75.0%	← Least import
4)	no Duration	74.1%	*All are significant (p
5)	no Pitch & Intensity	62.8%	0.001) compared aga
6)	no Pitch & Duration	59.3%	a random baseline
7)	no Duration & Intensity	71.9%	frequency of each tor
8)	All three cues removed	55.8%	under the Wilcoxon te

Effects of removing each cue for different tones:

Model	T1	T2	Т3	T 4
Natural speech	76.7%	75.5%	63.7%	84.9%
no Pitch	-15.4%	-12.0%	-4.4%	-7.9%
no Intensity	+2.0%	-7.3%	-7.9%	+0.5%
no Duration	-0.7%	-5.0%	+0.4%	-5.0%

The first author thanks Morgan Sonderegger, Jiangtian Li, and Michael McAuliffe for helpful discussion, and Lei Yu and Jingyi He for help on model training. Selected References: S Chuang, C. K., Hiki, S., Sone, T., and Nimura, T. (1972). The acoustical features and perceptual cues of the four tones of Standard Colloquial Chinese. Proceedings of the Seventh International Congress on Acoustics (Adadémial Kiado, Budapest), 297-300.; F Dreher, J. and Lee, P.C. (1966). Instrumental investigation of single and paired Mandarin tonemes. Research Communication 13, Douglas Advanced Research Laboratories.; Gandour, J. (1984). Tone dissimilarity judgments by Chinese listeners. Journal of Chinese Linguistics 12, 235-261.; Hochreiter, Sepp, and Jürgen Schmidhuber. "LSTM can solve hard long time lag problems." Advances in neural information processing systems. 1997.; Howie, J. M. (1976). Acoustical studies of Mandarin vowels and tones (Cambridge University Press, Cambridge).; Lin, M. C. (1988). Putong hua sheng diao de sheng xue texing he zhi jue zhengzhao [Standard Mandarin tone characteristics and percepts]. Zhongguo Yuyan 3, 182-193.; Kong, Ying-Yee, and Fan-Gang Zeng. "Temporal and spectral cues in Mandarin tone recognition." The Journal of the Acoustical Society of America 120.5 (2006): 2830-2840.; Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating errors." Cognitive modeling 5.3 (1988): 1.; Yuan, Jiahong, Neville Ryant, and Mark Liberman. Mandarin Chinese Phonetic Segmentation and Tone LDC2015S05. Web Download. Philadelphia: Linguistic Data Consortium, 2015.

A deep neural network approach to investigate tone space in Mandarin Chinese 4pSC28 Bing'er Jiang¹, Meghan Clayards^{1,2}, Mirco Ravanelli³, Timothy J. O'Donnell^{1,3} binger.jiang@mail.mcgill.ca, meghan.clayards@mcgill.ca, mirco.ravanelli@gmail.com, tim.odonnell@mcgill.ca 177th ASA, Louisville, KY ¹Department of Linguistics, McGill University; ²School of Communication Sciences and Disorders, McGill University; May 13 – 17, 2019 ³Mila, Université de Montréal, Canada MODEL **Q1:** How much information is available from the acoustic • **Task**: tone classification (one of the four tones) signals carried by <u>each cue</u>? Model: Long short-term memory (LSTM) network (Hochreiter& Schmidhuber, 1997), a variant of Recurrent NN (Rumelhart, 1988) Pitch Tone recognition accuracy when each Advantages: Intensity cue is removed/neutralized Compare to traditional GMM-HMM/ other deep learning models: Duration • The time course of tone recognition allows input to have different lengths, representing duration The prediction of the current state is **dependent on previous** Q2: What can we learn about tonal contrast from the lowdimensional representation derived from DNNs? states Allows for high-dimensional acoustic input from raw speech DATA before forming any linguistic abstraction, more similar to input humans receive **Corpus:** Mandarin Chinese Phonetic Segmentation (Yuan et al., 2015) Model/ training detail: Test: 300 utterances, 6 speakers; Train: 7549 utterances (train/validation: 90%/10%) Tone prediction Hidden state size =1024 Low-dimensional \rightarrow • Input: 39 MFCCs (the first 13 cepstral coefficients with Δ and Loss function: cross-entropy loss representation ← Bottleneck (BN) layer $\Delta\Delta$) + F0 estimation (z-scored) Optimiser = Adam < 10 dimension High-dimensional \rightarrow Dropout = 0.2Extracted from the <u>rhyme</u> (excluding onset) representation LSTM Network Batch size = 32Trained the models until the Computed every 10ms, with window of length 25ms **39 MFCCs + F0** Source Filter **Manipulation:** neutralize one or more cues from the natural Bottleneck layer dimension was attempted from 1 to 128, only used data, up to all three cues for visualization task **No Pitch**: resynthesize all tones to have F0 = 200Hz, using PSOLA lallul....l en 1 frame (10ms) method in Praat (Boersma & Weenink, 2019) **No Intensity:** flatten intensity to 70db (using Praat) **LOW-DIMENSIONAL REPRESENTATION No Duration:** normalize all tones to be 12 frames (= mean length of training data) 2-dimension is sufficient for natural data; more if some cue missing. **TIME COURSE** Test Data: no F0 Test Data: natural Model: natural Model: natural Trained on uni-directional LSTMs without BN layer: Tone 2 f0+int F0+intensity ant int intensity none tant remove all ainst -15 -10-10ne, type step Tone 4 step Tone 3 est. step ↑Averaging over four tones Presence of F0 facilitates recognition earlier in the tone Four tones independently \rightarrow • Presence/ absence of F0 creates different patterns except for Tone 3 DISCUSSION

2 3 4 5 6 7 8 9 10 11 1 step

> Pitch is the most important cue – evident from all three tasks **Intensity** is important for Tone 3; **Duration** is important for Tone 2 and 4 • 2D BN representations separate four tones in four quadrants When a cue is neutralized, four groups are pulled together in the 2D space Future work: map the BN dimensions with acoustic dimensions

Bidirectional (uni- for time-course)

- validation loss failed to improve

