

Modeling age of exposure in L2 learning of vowel categories

🐯 McGill

Meghan Clavards¹, Joe Toscano²

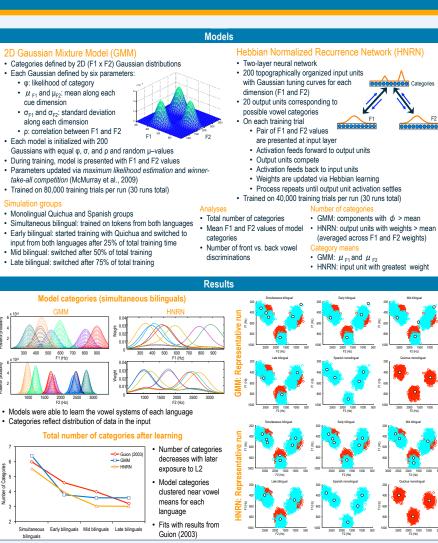
¹Centre for Research on Language Mind and Brain, McGill University, ²Department of Psychology, University of Iowa

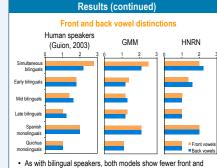
Background

- · Age of exposure is a predictor of second language proficiency
- Native-like phonological proficiency is attained only by learners exposed at the earliest ages (simultaneous bilinguals)

Does early commitment to phonological patterns account for age of exposure effects?

- Two computational models were trained using unsupervised learning (Toscano & McMurray, 2008; McMurray et al., 2009) 2D Gaussian Mixture Model
 - Hebbian Normalized Recurrence Network
- · Trained on F1 and F2 tokens from two different vowel systems
 - Quichua: 3 vowels (/i/, /a/, /u/)
 - Spanish: 5 vowels (/i/, /e/, /a/, /o/, /u/)
- · Compared to production data of simultaneous, early, mid, and late bilinguals from Guion (2003)


Language data Spanish vowels Quichua vowels 900 2000 1500 1000 3000 2500 2000 1500 500 3000 2500 Quichua has one front vowel and one back vowel h has two front vowels and two back vowels Guion (2003) studied four groups of Quichua-Spanish bilinguals exposed to Spanish at different ages Simultaneous bilinguals distinguished Spanish and Quichua vowels


- · Late learners (age of first exposure > 13 yrs) produced only one front vowel and one back vowel
- · Learners exposed before age 13 varied in the number of vowels they produced
- · Front vowels were more often distinguished than back vowels
- Both models were trained on tokens from distributions modeled on the productions of monolingual speakers

References

Guion, S. (2003) The vowel systems of Quichua-Spanish bilinguals. Phonetica, 60, 68-128. McMurray, B. Aslin, R.N., Toscano, J.C. (2009). Statistical learning of phonetic categories: insights from a computational approach. Developmental Science, 12, 369 - 378. Toscano, J.C., McMurray, B. (2008, November). Online processing of acoustic cues in speech perception: Comparing statistical and neural network models. Poster presented at the 156th Meeting of the Acoustical Society of America, Miami, FL.

CogSci 2010, Portland, Oregon

back vowel distinctions with later exposure

Discussion

- Both models learn the vowel systems of Quichua and Spanish when trained on monolingual data
- · When exposed to bilingual data, both models distinguish different numbers of categories depending on when L2 (Spanish) is introduced, paralleling data from bilingual speakers with different ages of acquisition
- Age of exposure effect in the models arises as a consequence of learning without any changes in model plasticity (learning rates)
- · Language users may be restricted in learning a second language not because of a critical period, but by the commitments that the system has already made to the first language; a separate mechanism is not necessary

- · GMM categories are sometimes unstable and with too much training data, the model may end with fewer categories than in the language (unlike human learners); further exploring the parameter space of the model may lead to a more stable set of parameters
- HNRN can be given additional types of input, such as context information or labels for different lexical items: could allow the network to maintain distinctions between more categories
- Look at whether it is more or less difficult to learn an L2 with more categories than L1 (Quichua->Spanish) or to learn one with fewer categories (Spanish->Quichua)

Acknowledgements

We would like to thank Bob McMurray for helpful discussions about these simulations. This work was supported by a postdoctoral fellowship awarded by the CRLMB to M.C. and NIH DC008089 awarded to Bob McMurray.

meghan.clayards@mcgill.ca, joseph-toscano@uiowa.edu